If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x+x^2=126
We move all terms to the left:
11x+x^2-(126)=0
a = 1; b = 11; c = -126;
Δ = b2-4ac
Δ = 112-4·1·(-126)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-25}{2*1}=\frac{-36}{2} =-18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+25}{2*1}=\frac{14}{2} =7 $
| 6w=9w-2 | | (1-x)^10=0.2 | | 21/5x=61/3 | | 3+8x=17=x | | 8(8y-1)=100 | | 3x+2+x=7-x | | 4x2=12x+7 | | 2777.4=n/3.5 | | 3=8x=17+x | | x^2+2x+9=5 | | 17/50=a/100 | | 5x-16+x+10=180 | | 18+15y=3 | | 5m-8=-8-8m-m | | 4(4y+7)=44 | | -7x+5x2+10=x(-2) | | 8x+1=50 | | (4y+8)-(3+3y)=9 | | 4x+2=+8 | | -5x+23=4x+50 | | z^2+59=0 | | 71=9x+21 | | w/2-16=19 | | 6x-48=-2(x+4) | | 2/3f=2/5 | | 3(2x+3)=+3x-5 | | 3D-6=d+8 | | -3(w-1)=5w-45 | | 1/2p=9 | | 2y+4-1=0 | | 5/q=15/9 | | -7(x/7-2)=21 |